NATURAL LANGUAGE PROCESSING UNIT-1

Introduction

feedback/corrections: vibha@pesu.pes.edu

VIBHA MASTI

PROCESS OF NLP

NLP, NLU, NLG

- · NLP: CS, AI, computational linguistics
- Turing test: if a machine behaves in a manner that is indistinguishable from a human – artificially intelligent
- · See here for more
- Natural language understanding: mapping natural language input into useful representations and analysing the aspects of the language – comprehension, sentiment analysis, discover meaning
 - semantic and syntactic analysis
- Natural language generation: producing meaningful phrases and sentences from some internal representation
 - Textual data: QEA pair generation from a given section
 - Numerical data: create earning summary from earning calendar
 - Pictures: image captioning
 - Diagrams: answer generation using applicable ontology

· More here

NLP vs NLU vs NLG

Natural Language Understanding

(NLU), and is a specific type of NLP that covers the "reading" aspect of NLP. NLU is used in for e.g.:

- Simple profanity filters (e.g. does this forum post contain any profanity?)
- Sentiment detection (e.g. is this a positive or negative review?)
- Topic classification (e.g. what is this tweet or email about?)
- Entity detection (e.g. what locations are referenced in this text message?) etc.

Most common example of usage of NLU: Alexa, Siri and Google Assistant

Natural Language Generation (NLG) is what happens when computers write language. NLG processes turn structured data

Natural Language Processing (NLP) is what happens when computers read language. NLP processes turn - text into processes turn - text into structured data.

<u>Probabilistic Model</u>

- · Models built from language data
- P("maison" → "house") high
 P("L'avo cat général" → "the general avocado") low
- · Requires knowledge about language, world
- · Need to extract features
- IBM Watson API
- Chatbot API
- Speech to text API
- Sentiment Analysis API
- Translation API by SYSTRAN
- Text Analysis API by AYLIEN
- Cloud NLP API
- Google Cloud Natural Language API
- MonkeyLearn

Natural Language Processing

ACL, NAACL, EACL, EMNLP, CoNLL, Coling, TACL aclweb.org/anthology

Machine learning

ICML, NIPS, ECML, AISTATS, ICLR, JMLR, MLJ

Artificial Intelligence

AAAI, IJCAI, UAI, JAIR

3 Themes in NLP

Chatbot NLP system

UNIX WC command - word count command - data processing command

NLP & its neighboure

Learning & Knowledge

- · ML & linguistic knowledge are important to each other
- Identifying stem words comination, combined, combines are all termed combine
- · NLP: combination of Learning & knowledge
- Hierarchical attention networks paper

Jearch & Learning

· Many NLP problems are optimisation problems

- · Search module: search solution space for optimal solution \hat{y} wrt x (combinatorial optimisation as NLP tasks are usually discrete)
- · Learning module: learn parameters O (numerical optimisation as parameters are continuous)
- Expressive model: when model is capable of making subtle linguistic distinctions
- · Expressiveness is often traded off against efficiency of search and learning
 - eg: word to word translations make search & learning
 easy but are not expressive enough to distinguish good
 translations from bad mes

- · Most NLP systems are not expressive in nature
- · complexity of search becomes exponential

Relational, Compositional and Distributional Perspectives

- · Any element of language (word, phrase, sentence, sound) can be described from 3 perspectivos
- 1. Relational Perspective:
 - consider the word journalist
 - journalist is a subcategory of a profession
 - anchorwoman is a subcategory of journalist
 - journalist performs journalism
 - journalism subcategory of writing
 - Relational perspective on meaning : basis for semantic ontologies (eq: WORDNET)

2. Compositional Perspective

- Words made of constituent parts
- journalist: journal + ist
- strength: analyse text without training (can address the long tail)
- 3. Distributional Perspective
 - Words are replaceable by other phrases
 - eq: idioms

 - relational & composational models fail here
 meaning constructed from context distributional properties

· All three critical to NLP but require seemingly incompatible approaches & representations

TYPES of AMBIGUITY

1. Lexical

- · Ambiguity of a single word Cmultiple meanings for same (brow
- · Eg: She is looking for a match. _ matchstick

2. Syntactic

- · Sentence can be parsed in multiple ways Cmultiple meanings for a single sentence) Eq: The chicken is ready to eat. - is the chicken eating?

is the chicken to be eaten?

3. Semantic

- · Meanings of words misinterpreted _____ Pole moving
- · Eq. The car hit the pole while it was moving. Car moving

4. Anaphoric

- Referential ambiguity cusing pronouns)
 Eq: The boy told his father of the theft. He was very upset. < father

5. Pragmatic

- · Context of a phrase gives it multiple interpretations
- · statement is not specific
- · Eg: I like you too. / like you do

6. Metonymy

· Phrases in which literal meaning is diff from figurative assertion

Steps IN NLP

O. Phonetics & Phonology

- Phonetics: branch of linguistics that studies the counds of human speech
 - Phoneme: smallest sound unit in a language that is capable of conveying a distinct meaning (s of sing, r of ring)
- Homophones: same sound, different meanings, different spellings
 alter/altar, sell/cell, bore/boar, lone/loan

- Homonym/Homograph: same sound, different meanings, different spellings
 - bank (money /river)

•

Heteronym: different sound, different meanings, same spelling • - minute (small, 60 seconds), read (past, present tense), wind (twist, movement of air)

P	olysemy:	coexist	ence	of m	any	possi ble	meanings	for	۵	single	word
ଶ	phrase	a	moral	s						U	
-	He is o	good	man.								
	He is a	a good	baske	tball	playe	r.					
		2	skill								

Table 1. The target polysemous words and their meanings

The polysemous words

Meanings

		Meaning 1: 'spread out'
		Meaning 2: 'not covered'
O	pen	Meaning 3: 'honest'
		Meaning 4: 'not hidden'
		Meaning 5: 'available'
		Meaning 1: 'move fast'
		Meaning 2: 'manage'
R	un	Meaning 3: 'provide'
		Meaning 4: 'use'
		Meaning 5: 'flow'
		Meaning 1: 'prepare'
		Meaning 2: 'force'
Μ	ake	Meaning 3: 'appoint'
		Meaning 4: 'reach'
		Meaning 5: 'represent'

· Phonology: study of sound structures in language

Consider a word like: "unhappiness". This has three parts:

There are three morphemes, each carrying a certain amount of meaning. *un* means "not", while *ness* means "being in a state or condition". *Happy* is a *free morpheme* because it can appear on its own (as a "word" in its own right).

2. Lexical analysis

- · Identifying and analysing structure of words
- · Lexicon: collection of words & phrases in a language
- · Divide chunk of text into paragraphs, sentences and words
- Obtaining properties of a word
 Eg. dog => image of dog & its properties => 4 leg, carnivore, animate
- Stemming: rudimentary rule-based process of stripping the suffixes (ing, ly, es, s etc) from word
- · Lemmatication: organised, step by step procedure to find root form of word using vocabulary and merphological analysis
 - Eg: go, going, went -> go
 - Better than stemming

4. Semantic analysis

- · Draws exact meaning from text, checks for meaningfulness
- · Disregards "I am eating hot ice cream"
- · Finding synonyms, word sense disambiguation, constructing Q&A systems, translating from one NL to another
- Must first do morphological & syntactic analysis before semantic analysis
- Semantic & pragmatic analysis make up the most complex phase of NLP

5. Discource integration

- · sense of context
- Meaning of a single sentence that depends in surrounding sentences.
- · Eq: Ram saw a hat. He wanted to buy it.
- · Anaphora: use of a word referring back to a word used earlier in text
- Active & passive voice: My house was broken into last week.
 They took my TV, knowledge bases

r burglars

6. Pragmatic analysis

- · Extra meaning read into text without actually being encoded
- · World knowledge, intentions, plans, goals
- Eg:
 - 1. The city police refused the demonstrators a permit because they feared violence.
 - 2. The city police refused the demonstrators a permit because they advocated revolution.
 - In 1, they refers to police
 - In 2, they refers to the demonstrators
- World knowledge in knowledge bases and inference modules to be utilised
- · Interpretation of ambiguity, intent

TEXT NORMALISATION

- · Segmenting / tokenising words
- · Normalication of word formats (case conversion)
- · Results in smaller vocabulary and smaller feature vectors
- · Standardisation of numbers (1000/1.000) and dates

Parts of Speech

Types vs Tokens

12245789101112They picnicked by the pool, then lay back on the grassand looked at the stars.1314151111

 18 tokens (including punctuation) - space delimiter - instance of type in (unning text)

· 16 types (unique words) - element of vocabulary

Jokenization.

- Breaking up sequence of characters in text by locating word boundaries.
- Th written languages (Chinese, Japanese, Turkish etc.) no explicit word boundaries in writing system
 - Word segmentation
- · sentence segmentation also a part of preprocessing
 - sentence boundaries
- In general, binary classifier to decide if a period (.) marks the end of a sentence or is a part of a word
 Abbreviation dictionary helpful
- · SOTA methods for sentence to kenisation based on ML
- · Accuracy of tokenisation affects results of higher level processing
- · Problems / ambiguity
 - United States, ATRT, 3-year-old
 - Prof. Dr. J. M.
 - 123,456.78
- · !,? not as ambigious
- · . quite ambiguous
 - sentence boundary
 - Dr., Inc. Cabbreviations)
 - .2./., 0.234 (numbers)

•

.

Jext Mormalization

- · Elimination of inflectional affixes C-ed, -s suffixes etc.)
- · Stemmer: eliminate affixes using series of regex substitutions
- · Character-based stemming algorithms: necessarily approximate

Original	The	Williams	sisters	are	leaving	this	tennis	centre
Porter stemmer	the	william	sister	are	leav	thi	tenni	centr
Lancaster stemmer	the	william	sist	ar	leav	thi	ten	cent
WordNet lemmatizer	The	Williams	sister	are	leaving	this	tennis	centre

performs better than stemmers

Snowball stemmer:	built or	n SNOBOL	and	Porter	(same	creator	20
Porter) - supports	many 1	lan guages	- als	o called	Porter	r 2	

- · Lemmaticer: identify underlying lemma of wordfrom
 - avoid over-generalisation errors of stemmers
- · Both stemming & lemmatisation are language specific
- · Stemming and lemmatisation used in
 - tagging systems
 - indexing
 - search engine optimisation (SED)
 - web search results
 - information retrieval
- Lemma: dictionary form of words (headword)
 run, runs, ran, running forms of same lexeme with run as the lemma
- · Lemmatisation takes into consideration of morphological analysis of the words
 - look up dictionary
- · Lemmatisers are more complex as sometimes stemmers are preferred
- · Stem: root + derivational morphemes / affixes
 - root: run, bat, chat
 - morphologically complex (eq: compound words): bottle opener
 - words with derivational morphemes: blacken, standardize, unkind
- · Crude chopping of suffixes; not always acceptable words

N-grams

- · n-gram: contiguous sequence of n items from text | speech
- · Items: letters, words, base pairs, phonemes, syllables etc.
- · Eq: she was laughing at him.
 - 1-grams: She, was, laughing etc 2-grams: She was, was laughing etc 3-grams: She was laughing, was laughing at etc.
- n-gram model : type of probabilistic language model for predicting the next item in the sequence

PORTER STEMMER

- · Stripping of suffixes varies depending m
 - whether stem dictionary used
 - whether suffix list with various rules used
 - https://tartarus.org/martin/PorterStemmer/
- · Using stem dictionary: difficult, time-consuming
- · Instead, explicit set of suffixes with removal rules
- · Simple, rule-based, suffix stripping algorithm cheuristic method)
- · Five sets of rules applied in order; practical method and not guaranteed to be optimal
- · Paper in 1980

Porter Stemmer Definitions

- · Consonants: a letter other than A,E, 1,0 and U and the letter Y unless it is preceded by a vowel
 - consonant: Y in TOY
 - vowel: Y in RHYTHM
- · Vowel: a letter other than a consonants

Porter Stemmer

- · conconant denoted by c, vowel denoted by v
- · A list of consonants of length > 0 is denoted as C
- \cdot A list of vowels of length > D is denoted as V
- · A word has one of four forms
 - 1. CVCV...C
 - 2. CVCV...V
 - 3. VCVC...C
 - 4. VCVC...V optimal
- · Generically, [C]VCVC...[V]
- · Using (VC) {m} to denote VC denoted m times,

$[C](VC) \{m\}[V]$

· .: all words are cm denotes measure of word or word part)

$[c](vc)\{m\}[v]$

· Eg: TROUBLES

C (VC) {2}

- · m is measure of word or word part
 - I. M=0 [C][V]
 - eg: TREE, BY
 - 2. M-I [C]VC[V] - eq: TINY, OATS, TROUBLE, IVY
 - 3. m=2 [C] VCVC [V] - eq: TROUBLES, PRIVATE, EATEN

Rules for suffix Removal

- · Form: (condition) S1 -> S2
 - meaning: if a word ends with suffix \$1 and the stem before \$1 satisfies the condition, \$1 replaced with \$2
- · condition usually given in terms of m
- Eg: (m >1) EMENT ->
 SI = EMENT
 S2 = null
 - REPLACEMENT -> REPLAC
 - ELEMENT
 - $(VC)' \rightarrow does not satisfy$

- MEASUREMENT - MEASUR

Porter Stemmer Rule Format

l.	n	۸	– measu	lre o	F st	em					
2.	¥	S	 – stem	ends	with	S	Cand	for	other	letters)	
3.	*,	v*	 – stem	cont	ains	۵	vowel				
4.	¥	d	 – stem	ends	with	n d	double	cons	ionant	Ceg: -TT, -SS	3)
S .	¥-	0	 — stem	ends	in	cvc	vohere	seco	nd c	not W, X, MY	(eg:
			-WIL	., -но	(P)						

conditions may also contain logical expressions Cand, or, not)

(m>1 and (*S or *T))

tests for a stem with m > 1 ending in S or T, while

(*d and not (*L or *S or *Z))

tests for a stem ending with a double consonant other than L, S or Z. Elaborate conditions like this are required only very rarely.

Step 1 - plurals & past participles

	Step 1a		
plurals ($\begin{array}{ccc} Step & Ta \\ SSES & \rightarrow SS \\ IES & \rightarrow I \end{array}$	caresses ponies	→ caress → poni
1	$\begin{array}{ccc} SS & \rightarrow SS \\ S & \rightarrow \end{array}$	ties caress cats	$ \begin{array}{l} \rightarrow \text{ ti} \\ \rightarrow \text{ caress} \\ \rightarrow \text{ cat} \end{array} $
C	Step 1b		
part)	(m>0) EED \rightarrow EE	feed agreed	\rightarrow feed \rightarrow agree
tense,	$(*v*)$ ED \rightarrow	plastered bled	\rightarrow plaster \rightarrow bled
rogressive	(*v*) ING →	motoring sing	\rightarrow motor \rightarrow sing

•	If		2 nd	n	3 rd	ru	les	in	16	su	ccess	ful,	follo	Wi	٨g	is	dor	ne		
															0					
		\int		AT	$\rightarrow I$	٩ΤΕ	2				C	confla	at(ed)		- _ >	cc	onfla	te		
				BL	\rightarrow H	BLE	,				1	roub	l(ing)			tŗ	oub	e		
					→, I	ZE	*1	*0	*	7))	5	siz(ec	1)		\rightarrow	SI	ze			
aeu	שייח	+		(*a a		101 (or *5	or T	L))	1		(:)			h.				
<u> </u>	?			\rightarrow	Sing	gie i	ene	1			1	annl	ed)			ta	ր			
		٢.									-	ann fall(ir	ng)			fa	11			
											<u> </u>	hiss(i	ng)			hi	SS			
											d	fizz(e	d)			fi	ZZ			
				(m=	1 an	d *a) –	→ E			1	fail(ìi	ng)			fa	il			
							-				1	fil(ing	g)		- - ->	fil	e			
			Th let –A in	e rule ter pa TE, - step 4	to r ir. T -BLI 4.	nap 'he - E an	to a -E is d –l	singl s put ZE c	le lett back an be	ter c on – e rec	auses -AT, ognis	the -BL sed la	remova and –] iter. T	al o IZ, his	for so En	ne c tha nay	of th t the be	e do sul rem	ouble ffixes ovec	> 1
replac	eme	vt(S	Step 1	c															
` of	Y			(*	v*) `	Y -	→ I					ł	appy				\rightarrow	har	opi	

lacement() of y	Step 1c (*v*) $Y \rightarrow I$		happy sky			happi sky
Step 2 -	perivational Mor	rphology				
	Step 2 $(m>0)$ ATIONAL $(m>0)$ TIONAL $(m>0)$ ENCI $(m>0)$ ANCI $(m>0)$ ANCI $(m>0)$ ABLI $(m>0)$ ABLI $(m>0)$ ABLI $(m>0)$ ALLI $(m>0)$ ENTLI $(m>0)$ ELI $(m>0)$ OUSLI $(m>0)$ ATION $(m>0)$ ATION $(m>0)$ ALISM $(m>0)$ FULNESS $(m>0)$ FULNESS $(m>0)$ ALITI $(m>0)$ IVITI $(m>0)$ BILITI		relational conditional rational valenci hesitanci digitizer conformabli radicalli differentli vileli analogousli vietnamization predication operator feudalism decisiveness hopefulness callousness formaliti sensitiviti sensibiliti	 relate conditi rationa valenci hesitar digitizi confor radical differe vile analog victnar predica operati feudal decisiv hopefu callous formal sensitiv sensitiv 	ion al e e mab l nt gous mize ate e e l l s ve e	le

The test for the string S1 can be made fast by doing a program switch on the penultimate letter of the word being tested. This gives a fairly even breakdown of the possible values of the string S1. It will be seen in fact that the S1-strings in step 2 are presented here in the alphabetical order of their penultimate letter. Similar techniques may be applied in the other steps.

Jep 3 - Derivational Morphology 11

Step 3

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	triplicate \rightarrow formative \rightarrow formalize \rightarrow electriciti \rightarrow electrical \rightarrow hopeful \rightarrow goodness \rightarrow	form formal electric electric hope good
--	--	--

Step 4 - Derivational Morphology 111

Step 4

· · · · · · · · · · · · · · · · · · ·			
(m>1) AL		revival	→ reviv
(m>1) ANCE	- >	allowance	\rightarrow allow
(m>1) ENCE	- >	inference	→ infer
(m>1) ER		airliner	→ airlin
(m>1) IC		gyroscopic	→ gyroscop
(m>1) ABLE		adjustable	→ adjust
(m>1) IBLE		defensible	→ defens
(m>1) ANT		irritant	→ irrit
(m>1) EMENT	→	replacement	→ replac
(m>1) MENT	\rightarrow	adjustment	→ adjust
(m>1) ENT	\rightarrow	dependent	→ depend
(m>1) and $(*S or$			-
*T)) ION	\rightarrow	adoption	→ adopt
(m>1) OU	\rightarrow	homologou	→ homolog
(m>1) ISM	→	communism	→ commun
(m>1) ATE		activate	\rightarrow activ
(m>1) ITI	→	angulariti	→ angular
(m>1) OUS	\rightarrow	homologous	→ homolog
(m>1) IVE	\rightarrow	effective	\rightarrow effect
(m>1) IZE	\rightarrow	bowdlerize	\rightarrow bowdler

The suffixes are now removed. All that remains is a little tidying up.

Step 5 - Tidying Up		
Step 5a		
$(m>1) E \rightarrow$	probate	→ probat
(m=1 and not *o) $E \rightarrow$	rate cease	\rightarrow rate \rightarrow ceas
Step 5b $(m > 1 and *d and *I) \rightarrow$	single letter	control
	controll	\rightarrow roll
Why it works		

The algorithm is careful not to remove a suffix when the stem is too short, the length of the stem being given by its measure, m. There is no linguistic basis for this approach. It was merely observed that m could be used quite effectively to help decide whether or not it was wise to take off a suffix. For example, in the following two lists:

list A	list B
RELATE	DERIVATE
PROBATE	ACTIVATE
CONFLATE	DEMONSTRATE
PIRATE	NECESSITATE
PRELATE	RENOVATE

-ATE is removed from the list B words, but not from the list A words. This means that the pairs DERIVATE/DERIVE, ACTIVATE/ ACTIVE, DEMONSTRATE/DEMONSTRABLE, NECESSITATE/ NECESSITOUS, will conflate together. The fact that no attempt is made to identify prefixes can make the results look rather inconsistent. Thus PRELATE does not lose the -ATE, but ARCHPRELATE becomes ARCHPREL. In practice this does not matter too much, because the presence of the prefix decreases the probability of an erroneous conflation.

· Better to ignore irregular forms and exceptions instead of making complicated rules

· Porter stemmers can repair fairly well

Input	Strip -ed Affix	Repair
hoped	hop	hope (add -e if word is short)
hopped	hopp	hop (delete one if doubled)

- Online demo: https://textanalysisonline.com/nltk-porter-stemmer
- Online demo gives:
 - gas (noun) \rightarrow ga
 - gases (plural) \rightarrow gase
 - gasses (verb, present tense) \rightarrow gass
 - gassing (verb, present continuous) \rightarrow gass
 - gaseous (adjective) \rightarrow gaseou

SPELLING CORRECTION

- · Word processing, search engines, texting
- · Spelling tasks
 - spelling error detection
 - spelling error correction

Types of spelling errors

- 1. Non-word errors
 - misspelled word is not a dictionary word
 - eq: giraffe → graffe
- 2. Real-word errors
 - · context has to be learnt
 - (a) Typographical errors
 - rearrangement of letters / wrong letters to form dictionary mand
 - eq: there -> three
 - (b) Cognitive errors (speech input)
 - due to homophones/misunderstandings
 - eq: peace → piece
 - eq: two -> too

mother form of classification of errors

- 1. Typographic : typing errors 2. Orthographic : lack of comprehension
- 3. Phonetic: cognition of listener

Rate of spelling Errors

26%: Web queries Wang et al. 2003

13%: Retyping, no backspace: Whitelaw et al. English&German

7%: Words corrected retyping on phone-sized organizer

2%: Words uncorrected on organizer Soukoreff & MacKenzie 2003

1-2%: Retyping: Kane and Wobbrock 2007, Gruden et al. 1983

Categories of Spell Checking Techniques

- 1. Non-word
- 2. Isolated
- 3. Context

1. Non-word errors

- · Any word not in dictionary
- · Larger dictionary better
- · Generate candidate real words
 - shortest weighted edit distance
 - highest noisy channel probability
- · Detection of non-words

2. Isolated-word error

- · Find nearest meaningful word
- · No context required
- Minimum edit distance, similarity key, rule-based methods, N-gram, Neural networks

3. Real-word / context dependent

- · Candidate word with similar pronunciation, spelling
- · Choose best candidate with noisy channel, classifier
- · Context dependent
- · Peace of mind, piece of my mind

EDIT DISTANCE

- · No. of edits to get from source string to destination string
- · Operations
 - insert
 - delete
 - substitution

Minimum Edit Distance

- · Minimum na of operations required for editing
- · Cost of operations (Levenshtein Distance)
 - incertion :1
 - deletion: 1
 - substitution: 2
- · Dynamic programming

Q: Transform Vinter to writers

- · Vinter —> Vrinter insert r
- vrinter -> vrinters insert s
- · vrinters -> wrinters substituted v-> w
- · wrinters -> writers delete n

String Alignment

- · Global alignment of strings S1 and S2
- · Align s, & sz such that each char/space in one string is opposite a unique char/space in another string
- · Si= gacdbd, Sz= gawzb
 - s₁ qacdbd
 - s₂ qawxb-

Algorithm

- Let D(i,j) denote edit distance of S, E1...i] and SzE1...j]
 minimum number of edits to transform first i chars of S, to first j chars of Sz
- · Three parts of DP
 - recurrence relation
 - tabular computation
 - traceback
- 1. Recurrence relation

$$D(i,j) = \min \left\{ D(i-1,j) + 1, deletion \\ D(i,j-1) + 1, insertion \\ D(i-1,j-1) + t(i,j) \\ substitution \\ \end{array} \right\}$$

· Initialisation

D(i, 0) = i	i deletions
D(0,j)=j	j insertions

· Termination

2. Tabular computation

Bottom-up approach to compute O(n,m) using D(i,j) for smaller
 i, j

function MIN-EDIT-DISTANCE(source, target) returns min-distance

```
n \leftarrow \text{LENGTH}(source)
m \leftarrow \text{LENGTH}(target)
Create a distance matrix D[n+1,m+1]
```

Initialization: the zeroth row and column is the distance from the empty string D[0,0] = 0

for each row *i* from 1 to *n* do

 $D[i,0] \leftarrow D[i-1,0] + del - cost(source[i])$

for each column *j* from 1 to *m* do

 $D[0,j] \leftarrow D[0,j-1] + ins-cost(target[j])$

Recurrence relation:

for each row *i* from 1 to *n* do

for each column j from 1 to m do

 $D[i, j] \leftarrow MIN(D[i-1, j] + del-cost(source[i]),$ D[i-1, j-1] + sub-cost(source[i], target[j]),

D[i, j-1] + ins-cost(target[j]))

Termination
return D[n,m]

Figure 2.17 The minimum edit distance algorithm, an example of the class of dynamic programming algorithms. The various costs can either be fixed (e.g., $\forall x, \text{ins-cost}(x) = 1$) or can be specific to the letter (to model the fact that some letters are more likely to be inserted than others). We assume that there is no cost for substituting a letter for itself (i.e., sub-cost(x, x) = 0).

 $Q_1: S_1 = HELLO, S_2 = ELDER, use Levenshtein dist Csubs = 27$

				tar	get	3		
		#	E	L	D	E	R	
	#	0	l	2	3	4	5	
	н	1	2	3	4	5	6	
source	e	2	T	2	3	4	5	
i	L	3	2	1	2	3	4	
	L	4	3	2	3	4	5	
	0	5	4	3	4	5	6	
							\sim	

Src\Tar	#	e	Х	e	c	u	t	i	0	n
#	0	1	2	3	4	5	6	7	8	9
i	1	2	3	4	5	6	7	6	7	8
n	2	3	4	5	6	7	8	7	8	7
t	3	4	5	6	7	8	7	8	9	8
е	4	3	4	5	6	7	8	9	10	9
n	5	4	5	6	7	8	9	10	11	10
t	6	5	6	7	8	9	8	9	10	11
i	7	6	7	8	9	10	9	8	9	10
0	8	7	8	9	10	11	10	9	8	9
n	9	8	9	10	11	12	11	10	9	8

Figure 2.18 Computation of minimum edit distance between *intention* and *execution* with the algorithm of Fig. 2.17, using Levenshtein distance with cost of 1 for insertions or deletions, 2 for substitutions.

3. Traceback

	#	e	X	e	c	u	t	i	0	n
#	0	<i>←</i> 1	← 2	<i>←</i> 3	← 4	<i>←</i> 5	$\leftarrow 6$	← 7	$\leftarrow 8$	$\leftarrow 9$
i	$\uparrow 1$	<u>~</u> ←↑2	<u>∽</u> ←↑3	⊼্⊷↑ 4	⊼,←↑ 5	⊼,←↑ 6	<u>~</u> ←↑ 7	べ 6	← 7	$\leftarrow 8$
n	$\uparrow 2$	⊼,←↑ 3	<u>⊼</u> ←↑4	⊼্⊷↑ 5	⊼,←↑ 6	⊼,⊷↑ 7	${\scriptstyle\nwarrow} \leftarrow \uparrow 8$	↑ 7	⊼,←↑ 8	乀 7
t	↑ 3	<u>∽</u> , ←↑ 4	<u>∽</u> , ←↑ 5	⊼,←↑ 6	⊼,⊷↑ 7	<u>∽</u> ←↑ 8	<u> </u>	$\leftarrow \uparrow 8$	<u>∽</u> ←↑9	$\uparrow 8$
e	$\uparrow 4$	べ 3	← 4	∿ ← 5	← 6	← 7	$\leftarrow \uparrow 8$	⊼,←↑ 9	∿~ 10	↑ 9
n	↑ 5	↑ 4	<u>⊼</u> ←↑ 5	⊼,←↑ 6	⊼,⊷↑ 7	⊼,←↑ 8	${\rm Ker}9$	∿~ 10	≤<+11	<u>∖</u> † 10
t	$\uparrow 6$	↑ 5	<u>∿</u> ←↑6	⊼্⊷↑ 7	⊼,←↑ 8	<u>∽</u> , ←↑ 9	べ 8	$\leftarrow 9$	$\leftarrow 10$	←↑ 11
i	↑ 7	↑ 6	<u>⊼</u> ←↑ 7	⊼,←↑ 8	⊼,←↑ 9	∿~ 10	↑ 9	べ 8	$\leftarrow 9$	$\leftarrow 10$
0	$\uparrow 8$	↑ 7	$\stackrel{\scriptstyle \nwarrow}{\leftarrow} 8$	7 →ک	∿~ 10	∿~↑ 11	↑ 10	↑ 9	× 8	$\leftarrow 9$
n	↑ 9	↑ 8	<u>~</u> ←↑9	<i>∽</i> → 10	≪←↑ 11	<u>~</u> ←↑ 12	↑ 11	↑ 10	↑ 9	K 8

Figure 2.19 When entering a value in each cell, we mark which of the three neighboring cells we came from with up to three arrows. After the table is full we compute an **alignment** (minimum edit path) by using a **backtrace**, starting at the **8** in the lower-right corner and following the arrows back. The sequence of bold cells represents one possible minimum cost alignment between the two strings. Diagram design after Gusfield (1997).

del i n-7e セーフス ins c after e いっと complexity Time: O(nm)

- inne: U(nm)
- · Space: O(nm)
- · Backtrace: O(n+m)

weighted Edit Distance

 Some letters more likely to be mistyped Cie→ei, close by m keyboard)

· Frequency of substitution

																		_								_
v					SI	ab[]	X, Y] =	Sub	stitu	itio	n of	X	(inc	orre	ect) f	for	Y ((orr	ect)						
А		1.				6			:	:	1.	1	(00	rrect	'			-						~		
	a	0	C 7	1	240		<u>g</u>	<u>n</u>	110	1	1		m	- 2	76	P	<u> </u>		35		<u>u</u>		W 1	A	<u>y</u>	-
a	0	0	2	1	342	0	0	2	118	0	1	0		3	10	10	0	1	33	9	2	0	1	0	2	0
ъ	0	0	9		2	2	5	1	0	0	0	2	11	2	0	10	0	6	20	10	1	2	8	1		0
c	0	10	12	10	10	9	2	5	0	0	1	2	2	2	1	10	2	12	39	40	0	3	4	1	1	0
a	200	10	13	11	12	2	2	5	0	0	6	2	~	5	02	0	0	43	50	44	15	0	4	0	10	0
c	200	15	5	11	1	6	2	2	09	0	0	2	4	1	95	0	0	6	12	12	15	0	2	0	10	0
1		15	11	11	0	2	0	0	0	1	1	2	4	0	2	1	2	5	12	21	0	0	1	0	2	0
B	1	0		2	0	0	0	0	0	0	2	0	12	14	2	2	0	2	13	11	0	0	2	0	0	~
:	102	0	0	0	146	0	1	0	0	0	ő	6	12	14	10	0	0	0	2	1	47	0	2	1	15	0
1	105	1	1	0	0	0	1	0	0	0	0	2	1	0	49	0	0	0	5	0	0	0	ő	ô	15	0
J k	1	2	8	4	1	1	2	5	0	0	ő	0	ŝ	0	2	ő	0	0	6	0	ő	0	4	ő	0	3
1	2	10	1	4	ô	Â	5	6	13	0	1	0	0	14	2	5	0	11	10	2	ň	0	0	0	0	0
-	1	3	7	8	ŏ	2	0	6	0	õ	4	4	ŏ	180	õ	6	0	0	0	15	13	3	2	2	3	ő
n.	2	7	6	5	3	õ	1	19	ĩ	ő	4	35	78	0	ő	7	ő	28	5	7	0	õ	ĩ	2	õ	2
0	01	1	ĩ	3	116	õ	ô	ó	25	ŏ	2	0	0	ŏ	ŏ	14	ŏ	2	4	14	39	Ő	ō	õ	18	õ
D	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	õ	0	ŏ
a	0	0	1	ō	0	0	27	0	ō	Ó	Õ	õ	0	0	0	0	Ő	0	0	0	0	0	ō	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
Z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0
			-		_			-				-			-					_	_					

NOISY CHANNEL MODEL FOR SPELLINGS

- Most probable correct word from a misspelled word can be computed by
 - 1. Generating possible correct words with some edit distance model
 - 2. Estimating prior and likelihood probabilities using a language model
 - 3. Computing posteriors and MAP using Bayes Theorem

- Noisy Channel Model: framework used in Q&A systems, machine translators, spell checkers etc.
- · Goal: find intended word from misspelled word

Figure B.1 In the noisy channel model, we imagine that the surface form we see is actually a "distorted" form of an original word passed through a noisy channel. The decoder passes each hypothesis through a model of this channel and picks the word that best matches the surface noisy word.

- Probabilistic model to generate list of probable words
 biven an alphabet E, let E* = set of all finite strings over E.
- · Let dictionary D of valid words be some subset of \mathcal{Z}^* ,

D <u>C</u> 2*

The noisy channel is the matrix M, where every entry M_{WR} is the probability that $Z \in \mathbb{Z}^*$ is the noisy word obtained as output given that web is the true word

Mwx = P(x1w)

The intuition of the **noisy channel** model (see Fig. B.1) is to treat the misspelled word as if a correctly spelled word had been "distorted" by being passed through a noisy communication channel.

This channel introduces "noise" in the form of substitutions or other changes to the letters, making it hard to recognize the "true" word. Our goal, then, is to build a model of the channel. Given this model, we then find the true word by passing every word of the language through our model of the noisy channel and seeing which one comes the closest to the misspelled word.

- · The noisy channel model is a kind of Bayesian inference
- Out of all possible words in the dictionary D, we want to predict the true word ω such that P(w|z) is highest

 $\hat{w} = argmax P(w|x)$ w ED \hat{v} posterior

· Bayes Theorem noisy channel/likelihood

 $\hat{w} = \operatorname{argmax} \frac{P(x|w) P(w)}{P(x)} \xleftarrow{} prior$

ŵ = argmax P(x1w)P(w) wed

- Damerau-Levenshtein's Distance
 - Possible edits
 - 1. Insertion
 - 2. Deletion
 - 3. Substitution
 - 4. Transposition of 2 adjacent letters

•	~ 8	30 <i>`</i> }	D	fe	erm	2	are	WI	ithin	\ e	2d1t	d	lista	nce	2							
•	Al	mos	:+	a/I	are	W	ithiı	n e	2di+	di	ista	nce	2									
•	Al	low		inse	rtion	\ (f	spac	ce	and	۸ ۱	hyp	oher	•								
	-	tV	ni s i	de	. →	thi	í 1	dea				01			lav	ana	ne	m	odel			
		fe	or e ch	ach	c, e ir	n can ditpr	didate	es, ec	dits													
	Dicu	r	pr sc etu	ior <i>+</i> ore[rn a	$-\ln(z) = 1$ rgmax	x) og <i>cl</i> x_c sc	ore[c]	$\frac{l}{l}$	og pi	rior			ation	for				lond				
(9 :	Figu	r Ire I Nfu	pr <i>sc</i> etu 3.2	ior + ore[rn a No	$-\ln(z) = 1$ $rgmax$ $rgmax$ $rgmax$	x) og <i>ch</i> x _c sc ∙hann	hanne ore[c el mo	$\left \frac{2l+1}{2} \right $	og pr for sj	rior pellin	ng co	orre	ction	n for	· unł	cnow fry	n w	ord	s.	12211	pelli	ng
Q :	Figu Cou "A c	r Ire I nfu vress	pr sc etu 3.2	ior <i>←</i> ore[rn a No	$-\ln(z) = 1$ $rgmax$ $rgmax$ $rgmax$	x) og <i>cl</i> x _c sc hann ix	ianne ore[c el mo g e	$\frac{2l+1}{2}$	og pr for sj and di	rior pellin lida star	ng co te nce	orre Co	ction ovve F	n for chio L	· unł	cnow fr	n w	ord	s.	12211	pelli	~8
c 9:	Figu Cou "A c	r ire I nfu cress	pr sc etu 3.2	ior + ore[rn a No	$-\ln(z) = 1$ $cJ = 1$		anne ore[c el mo g e	$\frac{l}{l} + \frac{l}{l}$	og pr for sj and di	rior pellin adda stan	ng co te nce Tra	CO O ansfe Erro	ction F orma	n for tho atior Po	· unł	n m	n w • • •	vord	s.	1221	Pelli	~8
% :	Figu Con "A c	r Ire I nfu rress	pr sc etu	ior ← ore[rn a No Er ac	- Im(: c] = 1 rgmax Disy c AAY ASSU	x) og <i>ch</i> x _c sc hann hann	anne ore[c el mo g e	2l + 1l 2l + 1l 2d + 1l 2d + 1l d + 1l	og pr for sj avd di Ca Le	opellin Nda Star Prrec	ng cc te nce Tra t	orree Co o ansfe Erre Lett	ction wre f orma or ter	n for Lino Ation Po (La 2	• unk • s • sitio • tter	n #)	n w • + Ty de	vord he vpe	s.	122	pelli	~8
Q :	Figu Cou "A c	r Ire I nfu xress	pr sc etu 3.2	ior + ore[rn a No Er acc acc	- lm(: c] = l rgmax oisy c Aaty ASSU ror ress ress	x) og <i>cl</i> k _c sc hann ↑X umi∧ C ac c	anne ore[c el mo g e orrect tres	el + 1 odel 1 dit tion	og pri for sj di Ca Le t	oellin Ada star orrec tter	ng co te nce Tra t	CO O ansfe Erro Lett	ction f f orma or er	n for tion Po (Lu 2 0	unł AS sitio	n (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)	n w • ¥ Ty de	vord he vpe	s.	122	pelli	ng
⟨ 9 :	Figu Cou "A c	r Ire I Nfu Iress	pr sc etu 3.2	ior + ore[rn at No Er ac ac ac ac	ror ress ress ress	x) og <i>cl</i> x _c sc hann hann hx C ac ca ca ca	annee ore[c el mo g e prrect ctres ress ress	<i>el</i> + 1] odel 1 1 <i>c</i> <i>c</i> <i>d</i> <i>i</i> <i>i</i> <i>s</i>	og pri for sp di Co Le t	cellin Star Star Prrec	ng co te nce Tra t	CO O ansfe Erro Lett a ac r	ction F f or ter	ation Po (La 0 0 2	• unl ^ s sitio etter	n #)	n w • • • Ty de in: tra su	vord wpe eletic serti ansp bstit	s.	122	pelli	ng
% :	Figu Con "A c	r Ire I Nfu Nress	pr sc etu 3.2	ior + ore[rn a No Er acc acc acc acc acc acc acc ac	ror ress ress ress ress ress	x) og <i>cl</i> kx _c sc hann ↑X mi∧ C ac cn ca ac ac	el mo el mo g e prrect ctres cess ccess ccess ccess	<i>el</i> + 1] odel 1 <i>d</i> (<i>i</i> + <i>tion</i>	og pri	opellin Star prrec tter	ng co ite nce Tra	orree 0 ansfo Erro Lett a a ac r e	ction F or ter	n for chio L atior Po (Lu 2 0 0 2 3	• unl AS sitio etter	n #)	n w • ¥ Ty de in: tra su su	vord verti ver	s.	n	pelli	ng
% :	Figu Con "A c	r Ire I nfu vress	pr sc etu 3.2	ior (ore[rn a No Er ac ac ac ac ac ac ac ac ac	ror ress ress ress ress ress ress	x) og <i>cl</i> x _c sc hannn ↑X CC ac ac ac ac ac ac	anna ore[c el mo g el mo g el mo g el mo g el mo c el mo c el mo c el mo c el mo c el mo c el mo c el c el c el c el c el c el c el c el	l = l + l d	for sp for sp di di Co Le t ca c o	opellin Ada star orrec tter	ng cơ h te h ce Tra	co o o ansfo Erro Lett a a ac r e s	ction f f or ter	1 for 2 fio 1 1 1 1 1 1 1 1 1 1 1 1 1	• unk As sitio etter	n #)	n w • ¥ Ty de in: tra su su in:	vord vpe eletic serti ansp bstit bstit serti	s. on on ositic uution on	n	Pelli	ng
S :	Figu Con "A c	r Ire I nfu vress	pr sc etu	ior < ore[rn a No Er ac ac ac ac ac ac ac	ror ress ress ress ress ress ress ress r	x) og <i>cl</i> kx _c sc hann hann hann hann k cc cc ac ac ac ac ac ac ac ac ac ac ac	el mo el mo Q d g e prrect ttres ccess ccess cross cross cross cross cross cross cross	l + l l l l l l l l	og pri	pellin Ada Star prrec tter	ng co te nce Tra t	co o ansfe Erro Lett a ac r e s s s	ction F forma or	atior Po (L4 2 0 0 2 3 5 4	• unł • s sitio etter	n #)	n w • ¥ de in: tra su su in:	vord vpe eletic serti ansp bstit bstit serti serti	s.	n L		

· P(w) - prior - computed from unigram language model (coch)

W	count(w)	p(w)	
actress	9,321	.0000231	
cress	220	.000000544	
caress	686	.00000170	
access	37,038	.0000916	
across	120,844	.000299	
acres	12,874	.0000318	

· Likelihood | channel model - P(xlw)

- local context

•

- corpus of errors

	Candidate	Correct	Error		
	Correction	Letter	Letter	$\mathbf{x} \mathbf{w}$	$\mathbf{P}(\mathbf{x} \mathbf{w})$
ſ	actress	t	-	c ct	.000117
	cress	-	a	a #	.00000144
	caress	ca	ac	ac ca	.00000164
	access	с	r	r c	.000000209
	across	0	e	e o	.0000093
	acres	-	S	es e	.0000321
	acres	-	S	ss s	.0000342

Figure B.4 Channel model for acress; the probabilities are taken from the *del*[], *ins*[], *sub*[], and *trans*[] confusion matrices as shown in Kernighan et al. (1990).

· 4 confusion matrices used to predict P(x/w) (likelihood)

del[x, y]: count(**xy** typed as **x**) ins[x, y]: count(**x** typed as **xy**) sub[x, y]: count(**x** typed as **y**) trans[x, y]: count(**x** typed as **yx**)

From https://aclanthology.org/C90-2036.pdf

x		h		a		r -		del[]	х, Y]≡! _1	Deli Y (De	etion eleted	of Let	Y al	ter	x							_				x	1		h		а ·			add	x, 1] = •	Inse Y (In	ertio serte	n of d Let	fY: tter)	after	x								
abcdef 8hijklmnopqrstuvwxyz@	0 2 37 12 80 4 25 15 26 0 4 24 24 25 15 21 21 25 0 6 3 16 24 24 24 26 0 1 2 20	7 2 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	558 : 707 7 550 0 0 1 550 0 0 1 660 0 0 1 660 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 2 2 7 2 9 0 0 1 1 7 3 4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 21 0 25 4 0 25 4 1 2 2 2 3 2 2 3 2 3 2 3 2 3 2 4 0 1 1 0 1 0 31	3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1	n n 8 8 0	1 61 183 320 62 6 79 24 1 0 5 217 42 191 42 191 42 191 132 231 427 28 31 0 132 0 132 0 132 0 132 0 5 24 10 133 133 133 134 135 135 135 135 135 135 135 135	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43 426 17 8 32 12 3 7 8 32 12 3 7 8 0 3 2 11 0 0 3 2 31 2 31 2 31 2 31 2 31 2 3 2 31 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 1 3 3 2 3 3 1 3 3 2 3 3 1 3 3 2 3 3 1 0 1 3 3 2 3 1 3 1 0 1 3 2 2 3 1 3 2 2 3 1 0 1 3 2 2 3 1 0 1 3 2 2 3 1 0 1 3 2 2 3 1 0 1 2 2 2 3 1 0 0 2 2 2 3 1 0 0 2 2 2 2 3 1 0 0 2 2 2 2 3 1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2	3 0 4 9 0 0 1 1 4 0 0 0 1 1 0 0 2 1 80 1 7 1 1 3 2 1 0 0 2 0 1 1 1 9 1 1 9 1 0 0 0 0 1 1 1 9 0 0 0 0		0 2 33 3 19 4 4 22 41 1 29 7 21 20 0 21 30 0 21 30 0 21 30 0 21 30 0 5	P 900090070003102030100061017		77 10 98 2 46 46 46 46 46 11 37 2 15 52 15 2 0 0 1 2 2 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2	* 28 : 28 28 : 20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 53 6 0 54 1 2 54 1 2 54 1 2 54 0 0 7 0 0 87 4 13 4 18 1 13 4 18 0 1 36 13 4 10 1 156 0 0 5 1 0 0 5 4 1 2 2 2 6 5 4 1 2 2 2 6 5 4 1 2 2 2 6 5 4 1 2 2 2 6 5 4 1 3 4 1 3 4 1 3 4 1 3 5 4 1 3 4 1 3 5 4 1 3 4 1 3 5 4 1 3 4 1 3 5 4 1 3 1 4 1 3 5 4 1 3 1 4 1 5 5 4 1 3 1 5 5 4 1 3 1 4 1 5 5 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	22 6 7 3 8 1 1 2 0 1 1 1 0 3 4 3 7 7 2 8 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	www. www. 1 (1) 00 (2) 1 (1) 00 (2) 1 (1) 00 (1) 1 (1) 00 (1) 1 (1) 00 (1) 1 (1) 00 (1) 1 (1) 00 (1) 1 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 1 24		×0000070000000000000000000000000000000	y = 2 = 0 1 = 1 = 1 1 = 1 = 1 1 = 1 = 1 1 = 1 = 0 1 = 0 1 = 0 1 = 0 1 = 0 1 = 0 0 = 0	z00000007000000000000000022		abcdefghijklmnoPqrstuvwxyz@	1 1 3 3 1 1 1 1 1 1 2 2 1 1 1 3 1 1 1 3 4	* 5 1 5 39 8 9 1 8 4 0 0 2 3 1 5 4 3 0 5 3 9 5 0 0 0 5 2 6	1 1 1 0 5 0 2 0 0 1 3 1 0 4 1 1 5 1 0 0 2 1 0 0 1 1 5 1 0 0 2 1 0 0 1 1 5 1 0 0 0 1 1 5 1 5 1 0 0 4 1 1 1 5 1 0 0 4 1 1 1 5 1 0 0 1 1 1 1 5 1 0 0 1 1 1 1 5 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4		8 8 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	333 50 50 50 12 8 12 8 12 8 12 8 12 8 12 8 12 8 10 9 9 0 0 12 8 8 16 9 0 0 12 8 8 16 9 0 0 12 8 8 16 9 0 0 12 8 8 16 9 0 0 12 8 8 16 9 0 0 12 8 8 16 9 0 12 9 9 9 12 8 8 16 9 0 0 12 12 8 8 16 9 0 0 12 12 8 8 16 9 0 0 12 12 8 8 16 9 0 0 12 12 8 8 16 9 0 0 12 12 8 8 16 9 0 0 12 12 8 16 9 0 0 12 12 8 16 9 10 12 12 12 12 12 12 12 12 12 12 12 12 12	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	к 4 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 31 15 1 6 4 10 2 1 17 0 1 17 0 1 17 0 1 17 0 1 17 0 1 17 0 1 17 0 1 17 0 1 17 0 1 1 1 5 2 0 1 1 1 1 5 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1		n = 39 1 = 9 27 = 0 1 = 1 33 = 0 0 = 0 0 = 0 1 = 1 0 = 0 7 = 7 1 = 9 1 = 0 0 = 0 7 = 7 1 = 9 1 = 0 0 = 0 1 = 20 0 = 0 2 = 0 0 = 0 1 = 20 0 = 0 1 = 20 0 = 0 1 = 20 0 = 0 2 = 0 0 = 20 0 = 20		P 4 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	q 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		34 34 16 25 19 117 23 624 55 95 95 95 95 95 95 95 95 95	1 7 7 0 7 0 7 0 7 0 7 0 7 0 7 0 6 0 2 22 1 0 0 7 1 3 3 4 1 9 0 0 7 1 2 2 9 1 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0	0 1	www.www.www.www.www.www.www.www.www.ww	x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y 4 0 0 5 8 1 0 3 0 0 4 2 0 1 1 0 0 7 6 3 0 0 2 2 1	$\begin{array}{c} z \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
					sub	[X, 1	('] =	Sub	stitu	tion	ı of	X (i	nco	rrec	t) fa	r Y	(co	rrec	t)																_				Dam		1	vv									
x		ь	c .	d ,	. 1		h	i	i	k	Y	(corr m	n n	0	p	a	r	5			w	. ,		v	z		x	1								evix	., x)	= .	Y	ersa	1 01	л									
abed ef Shijklmnopqrstuvwxyz	0 0 6 1 388 0 4 1 1 0 0 1 1 2 91 0 0 0 0 1 1 2 91 0 0 0 0 0 0 0 0 1 2 91 0 0 0 1 2 91 0 0 0 1 2 91 0 0 0 1 2 91 0 0 0 1 2 91 0 0 0 0 1 2 91 0 0 0 0 1 2 91 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 10 15 1 1 1 1 1 1 1 1 1 1 1 1 1	7 90 1 13 1 0 1 11 1 0 0 1 1 8 1 1 1 0 3 1 1 1 0 1 1 8 1 1 1 0 3 27 3 9 4 0 7 1 0 2 0	1 34 9 6 1 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 9 4 4 8 5 3 1 1 1 9 4 4 8 5 3 1 1 1 2 0 1 4 9 4 4 8 5 3 1 1 1 2 0 1 1 1 3 2 0 1 4 9 5 7 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 0 5 0 2 0 0 0 0 5 6 6 6 19 0 0 8 1 5 0 0 2 0 0 0 8 1 5 0 0 0 0 5 6 6 7 0 0 0 0 0 5 6 6 6 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c}118\\0\\0\\89\\0\\0\\0\\0\\1\\25\\2\\0\\0\\0\\1\\5\\0\\15\\0\end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$1 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 4 \\ 4 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 5 0 3 3 3 3 0 6 2 0 0 4 35 0 2 0 8 27 14 0 0 7 7	0 11 7 7 0 4 0 12 0 1 5 0 7 8 0 7 8 0 7 0 4 3 0 7 0 0 1 5 0 0 1 2 5 5	3 5 9 3 5 1 0 14 0 0 6 0 20 6 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	76 0 1 0 993 0 2 2 0 2 2 0 0 2 2 0 0 2 2 0 0 1 1 1 1 1 1 1 1	000013000567400476007010	0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3 0 5 3 13 3 14 1 5 1 3 0 0 0 0 11 1 0 0 14 3 0 0 0 11 3 0 0 0 14 3 0 0 0 1 14 3 14 0 0 14 1 14 0 0 14 0 0 14 1 14 0 0 14 0 0 0 14 0 0 0 0 0 14 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 2 9 4 2 2 9 4 3 2 2 9 4 3 2 2 9 4 3 2 2 1 1 2 5 6 0 9 5 4 1 1 2 5 6 0 9 5 4 1 1 2 5 6 0 9 5 4 1 1 2 0 2 0 1 7 0 8 3 9 6 1 1	9 1 4 00 2 6 2 6 2 7 1 4 0 0 0 4 0 0 0 4 0 0 0 4 0		0 1 0 8 7 0 4 7 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 2 3 4 1 0 0 5 5 12 10 0 0 0 0 0 0 0 0 0 0		0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 1 2 8 0 3 0 5 0 0 0 3 0 8 0 0 0 0 7 8 0 0 0 0 3 0 8 0 0 0 3 0 8 0 0 0 3 0 8 0 0 0 3 0 8 0 0 0 0	00000000003002000016000000		abcdefghijk1 mnopqrstuvwxyz		a 00 00 00 00 00 00 00 00 00 0			a c 1 1 00 2 00 1 00 0 00 0 00 0 00 0 00 0 00 0 00 2 00 2 00 2 00 2 00 2 00 0 00 2 10 1 10 1 10 0 00 0 00 0	r solution (1975) r solution (1	h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	199 00 85 7 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		k 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c}1\\14\\1\\0\\21\\1\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\$	m 4 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	n 25 0 0 16 0 15 0 2 0 0 0 1 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 10\\ 2\\ 13\\ 0\\ 11\\ 0\\ 0\\ 0\\ 11\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 1\\ 30\\ 1\\ 3\\ 20\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	p 3 0 0 0 0 0 0 0 0 0 0 0 0 0	q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r 27 0 1 29 0 1 29 0 0 0 0 0 0 0 0	s 3 2 3 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 0 5 0 0 0 5 0	t 5 3 0 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0 0 0 0 0	u 1 (0) 07 (0) 22 (0) 07 (0) 25 (0) 00 (0		x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<u>Sources of data</u>

•

- Roger Mitton: https://www.dcs.bbk.ac.uk/~roger/corpora.html
- · Peter Norvig: https://norvig.com/ngrams/

Estimation of P(x lw)

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[x_{i-1}, w_i]}{\operatorname{count}[x_{i-1}w_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[x_{i-1}, w_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_i w_{i+1}]}, & \text{if transposition} \end{cases}$$

del[x,,w2] = count (x,w2 typed as x,)

Candidate	Correct	Error				
Correction	Letter	Letter	$\mathbf{x} \mathbf{w}$	$\mathbf{P}(\mathbf{x} \mathbf{w})$	P (w)	$10^{9} P(x w) P(w)$
actress	t	-	c ct	.000117	.0000231	2.7
cress	-	a	a #	.00000144	.000000544	0.00078
caress	ca	ac	ac ca	.00000164	.00000170	0.0028
access	с	r	r c	.000000209	.0000916	0.019
across	0	e	e o	.0000093	.000299	2.8
acres	-	S	es e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

Figure B.5 Computation of the ranking for each candidate correction, using the language model shown earlier and the error model from Fig. B.4. The final score is multiplied by 10^9 for readability.

Using a Bigram Language Model

- "a stellar and versatile **acress** whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = .0010
- P(across|versatile) =.000021 P(whose|across) = .000006
- P("versatile actress whose") = .000021*.0010 = 210 x10⁻¹⁰
- P("versatile across whose") = $.000021 \times .00006 = 1 \times 10^{-10}$

Real Word Errors

- · Generate candidate set containing
 - the word itself
 - all single-letter edits that are in the dictimary
 - homophones
- · Choose best candidates
 - noisy channel model
 - task-specific classifier

NOISY CHANNEL MODEL FOR REAL WORDS

- · Given a sentence w, , w2, w3,.., wn
- · Generate a set of candidates for each word wi
 - candidate (wi) = {w, w, w, w, w, w, ", ...}
 - Candidate $(W_2) = \{W_2, W_2^2, W_2^{20}, W_2^{20}, \dots\}$
 - candidate (W3) = {W3, W3', W3'', W3''', ...]

· Choose sequence that maximises PCW)

Eg. The candidate set for the real word error thew might be C(thew) = {the, thaw, threw, them, thwe}

Make simplifying assumption: mly one misspelled word in each sentence

Thus the set of candidate sentences C(X) for a sentence
 X = Only two of thew apples would be:

only two of thew apples oily two of thew apples only too of thew apples only to of thew apples only tao of the apples only two on thew apples only two off thew apples only two of the apples only two of threw apples only two of thew apples only two of thew apples

Find W that maximises P(W)

W	two	of	the

Noisy channel for real-word spell correction

- · Probability of No Error P(the 1 the)
- · channel probability for a correctly typed word
- · Noisy channel scores every sentence

 Can use uni, bi or trigram probability of the sentence to compute P(W)

Compute Channel Model Probability P(xlw)

- · 2 real word error probability of / no error
- · Let channel model P(z(w) = & when x = w

· Distribute 1-2 evenly over all other candidate corrections ((x)

$$P(x|w) = \begin{cases} \alpha & \text{if } x = w \rightarrow \text{no error (of devided by design)} \\ \frac{1-\alpha}{|C(x)|} & \text{if } x \in C(x) \rightarrow \text{candidate errors} \\ equally likely \\ 0 & Otherwise \end{cases}$$

For the above example two of thew, using 3-gram Stupid
 Backoff model trained on Google n-grams

 Following Norvig (2009), we assume that the probability of a word being a typo in this task is .05, meaning that $\alpha = P(w|w)$ is .95. Fig. B.6 shows the computation.

X	W	XW	$\mathbf{P}(\mathbf{x} \mathbf{w})$	$P(w \vert w_{i-2}, w_{i-1})$	$10^8 P(x w) P(w w_{i-2},w_{i-1})$
thew	the	ew e	0.000007	0.48	333
thew	thew		<i>α</i> =0.95	9.95×10^{-8}	9.45
thew	thaw	ela	0.001	2.1×10^{-7}	0.0209
thew	threw	h hr	0.000008	8.9×10^{-7}	0.000713
thew	thwe	ew we	0.000003	5.2×10^{-9}	0.00000156

Figure B.6 The noisy channel model on 5 possible candidates for thew, with a Stupid Backoff trigram language model computed from the Google N-gram corpus and the error model from Norvig (2009).

For the error phrase *two of thew*, the model correctly picks *the* as the correction. But note that a lower error rate might change things; in a task where the probability of an error is low enough (α is very high), the model might instead decide that the word *thew* was what the writer intended.

State - J - the - art Systems

•	Autocorrect	(confident	in	correction)

- · Give best correction (less confident)
- · Give correction list (even less confident)
- · Flag as error (unconfident)
- weigh probabilities

ŵ=argmax P(x1w) P(w)

- · Learn λ from development test set
- Phonetic error model

- · Improvements to Channel Model
 - 1. Richer edits Brill and Moore, 2000 $ent \rightarrow ant$ $pn \rightarrow f$ $le \rightarrow al$

2. Incorporate pronunciation into channel - Toutanova and Moore, 2002

Classifier - based methods for specific pairs etc
 weather / whether